Math 125 Winter 2019

PLEASE WRITE CLEARLY.

NAME

Student ID

- IMPORTANT: write your solution BELOW the problem and DO NOT write within 1 cm of the edge. If you run out of space, continue your work in the back of the previous page and indicate clearly on the problem page that you have done so.
- Your exam will be scanned, so make sure your writing is clear and dark enough to appear on the scan
- Write your NAME (first, last) on top of every even page, except this one.
- Your exam contains 5 problems. The entire exam is worth 50 points. This exam has 6 pages. Please make sure that your exam is complete.
- You have 80 minutes to complete this exam.
- This exam is closed book. You may use one $8 \frac{1}{2}$ " $\times 11^{\prime \prime}$ sheet of notes (both sides). Do not share notes. The only calculator allowed is the TI 30x IIS.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Unless the problem asks for an exact answer, you can give a decimal approximation, rounding off to three decimal digits.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

1. Calculate the following integrals. Leave your answers in exact form simplifying as much as possible.
$u=x^{2}+2$
(a) $\int \frac{1}{\sqrt{2 x+5}}+x^{3} \sqrt{x^{2}+2} d x=\int(2 x+5)^{-1 / 2}+\int x^{3} \sqrt{x^{2}+2} d x \quad d v=2 x d x$

$$
\begin{aligned}
& \int(2 x+5)^{-1 / 2} d x=(2 x+5)^{1 / 2} \quad \int \frac{1}{2}(u-2) \sqrt{u} d u=\frac{1}{2} \frac{u^{5 / 2}}{\frac{5}{2}}-\frac{u^{3 / 2}}{\frac{3}{2}}+C \\
& \sqrt{2 x+5}+\frac{\left(x^{2}+2\right)^{5 / 2}}{5}-\frac{2}{3}\left(x^{2}+2\right)^{3 / 2}+C \\
& \sqrt{2 x+5}+\frac{\left(x^{2}+2\right)^{2}}{5} \sqrt{x^{2}+2}-\frac{2}{3}\left(x^{2}+2\right) \sqrt{x^{2}+2}+C
\end{aligned}
$$

$$
\text { (b) } \int_{1}^{2} \frac{\sin (3 \ln x+1)}{x} d x \quad \begin{aligned}
u & =3 \ln x+1 \\
d u & =\frac{3}{x} d x
\end{aligned}
$$

$$
\int_{3 \ln 1+1}^{3 \ln 2+1} \sin (u) \frac{d u}{3}=-\left.\frac{\cos u}{3}\right|_{1} ^{3 \ln 2+1}=\frac{1}{3}(\cos 1-\cos (3 \ln 2+1))
$$

Do not write above this line
NAME:
2. Consider $\int_{0}^{1} \sin x^{5} d x$.
(a) Write a formula for the right hand sum approximation with $n=3$ subdivisions, $\left(R_{3}\right)$ for the integral above.

$$
\begin{aligned}
& \Delta x=\frac{1}{3}, x_{0}=0, x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}, x_{3}=1 \\
& R_{3}=\left(\sin \left(\frac{1}{35}\right)+\sin \left(\left(\frac{2}{3}\right)^{2}\right)+\sin (1)\right)=\frac{1}{3}
\end{aligned}
$$

(b) Evaluate $\left(R_{3}\right)$ to approximate the integral above.

$$
R_{3}=\left(\sin \left(\frac{1}{35}\right)+\sin \left(\left(\frac{2}{3}\right)^{\circ}\right)+\sin (1)\right) \cdot \frac{1}{3} \approx 0.3<6
$$

Do not write above this line
NAME:
3. The acceleration of an object moving along a straight line, with initial velocity $v_{0}=2$ feet $/ \mathrm{sec}$ is given by $a(t)=2 t-3$ feet $/ \mathrm{sec}^{2}$.
a) Calculate the displacement of the object in the time interval $[0,2]$

$$
\begin{aligned}
& V(t)=t^{2}-3 t+2 \\
& \text { displacement }=\int_{0}^{2} t^{2}-3 t+2 d t=\frac{t^{3}}{3}-\frac{3 t^{2}}{2}+\left.2 t\right|_{0} ^{2} \\
& \quad=\frac{8}{3}-6+4=\frac{8-6}{3}=\frac{2}{3} \text { feet }
\end{aligned}
$$

b) Calculate the distance traveled by the object in the time interval $[0,2]$

$$
\begin{aligned}
& \text { distance }=\int_{0}^{2}\left|t^{2}-3 t+2\right| d t=\int_{0}^{1} t^{2}-3 t+2 \\
& +\int_{1}^{2}-t^{2}+3 t-2=\frac{t^{3}}{3}-\frac{3 t^{2}}{2}+\left.2 t\right|_{0} ^{1}+\frac{-t^{3}}{3}+3 \frac{t^{2}}{2}-2 t_{1}^{2}= \\
& =\frac{1}{3}-\frac{3}{2}+2-\frac{8}{3}+6-4+\frac{1}{3}-\frac{3}{2}+2=\frac{2}{3}-3+4-\frac{2}{3}=1 \text { foot }
\end{aligned}
$$

c) The object reaches a point A on the line at time $t=1$. What is the object 's distance from A at time $t=2$?

$$
\begin{aligned}
& \text { Let A be the origin then } \\
& S(t)=\frac{t^{3}}{S}-3 \frac{t^{2}}{2}+2 t+s_{0} \text { and } S(1)=0 \\
& \frac{1}{3}-\frac{3}{2}+2+s_{0}=0 \quad s_{0}=\frac{9-2-12}{6}=-\frac{5}{6} \\
& |S(2)|=\left|\frac{8}{3}-3 \cdot \frac{4}{2}+2 \cdot 2-\frac{5}{6}\right|=\left|\frac{11}{6}-\frac{12}{6}\right|=\frac{1}{6} \text { feet }
\end{aligned}
$$

Do not write above this line
NAME:
4. Calculate the area of the shaded region below. $A B$ is a segment of the straight line $y=\frac{x}{4}+\frac{3}{4}, B C$ is a segment of the straight line $y=-\frac{5}{2} x+\frac{29}{2}, C D$ is along the curve $y=x^{2}+2$ and $D A$ is along the curve $y=-x^{2}+2 . \quad A=(1,1), B=(5,2)$, and $C=\left(\frac{5}{2}, \frac{33}{4}\right)$.

$x^{2}+2=-x^{2}+2$
$x=0$
$D(0,2)$
$\int_{1}^{2} 4\left(y-\frac{3}{4}\right)-\sqrt{2-y}$
$d u+\int_{2}^{33 / 4}-\frac{2}{5}\left(y-\frac{29}{2}\right)-\sqrt{y-2} d y=$

$$
\frac{7}{3}+\frac{625}{48}=\frac{737}{48} \approx 15.354
$$

$\int_{0}^{1}\left(x^{2}+2\right)-\left(-x^{2}+2\right) d x+\int_{1}^{5 / 2}\left(x^{2}+2\right)-\left(\frac{x}{4}+\frac{3}{4}\right) d x+\int_{5 / 2}^{5}\left(-\frac{5}{2} x+\frac{29}{2}\right)-\left(\frac{x}{4}+\frac{3}{4}\right) d x$

$$
\frac{2}{3}+\frac{125}{32}+\frac{275}{32}
$$

Do not write above this line
NAME:
5. The graph of $f(x)$ below consists of a straight line and a semicircle. Give exact answers.

(a) Calculate $\left|\int_{-1}^{4} f(x) d x\right|$

$$
\left|\frac{1}{2} \cdot 1 \cdot 3-\frac{1}{2} \pi \cdot 2^{2}\right|=2 \pi-\frac{3}{2}
$$

(b) Calculate $\int_{-1}^{4}|f(x)| d x=2 \pi+\frac{3}{2}$
(c) Let $h(x)=\int_{0}^{2 x} f(t) d t$. Compute $h^{\prime}(1)$

$$
\begin{aligned}
& h^{\prime}(x)=f(2 x) \cdot 2 \\
& h^{\prime}(1)=f(2) \cdot 2=-4
\end{aligned}
$$

(d) Let $g(x)=\int_{0}^{x} f(t) d t$. Is g concave up or down at $x=-\frac{1}{2}$? Justify your answer.

$$
\begin{aligned}
& f=\rho^{\prime} \text { is decreasing at } x=-\frac{1}{2} \\
& \text { so concave down }
\end{aligned}
$$

Do not write above this line
NAME:

Math 125 Winter 2019

PLEASE WRITE CLEARLY

NAME

Student ID

- IMPORTANT: write your solution BELOW the problem and DO NOT write within 1 cm of the edge. If you run out of space, continue your work in the back of the previous page and indicate clearly on the problem page that you have done so.
- Your exam will be scanned, so make sure your writing is clear and dark enough to appear on the scan
- Write your NAME (first, last) on top of every even page, except this one.
- Your exam contains 5 problems. The entire exam is worth 50 points. This exam has 6 pages. Please make sure that your exam is complete.
- You have 80 minutes to complete this exam.
- This exam is closed book. You may use one $8 \frac{1}{2}$ " $\times 11^{\prime \prime}$ sheet of notes (both sides). Do not share notes. The only calculator allowed is the TI 30x IIS.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Unless the problem asks for an exact answer, you can give a decimal approximation, rounding off to three decimal digits.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

1. Calculate the following integrals. Leave your answers in exact form simplifying as much as possible.

$$
\begin{aligned}
& \text { (a) } \int x^{5} \sqrt{x^{2}+1}+\sqrt{3 x+2} d x \\
& u=x^{2}+1 \\
& d u=2 \times d x \\
& \int(u-1)^{2} \sqrt{u} \frac{d u}{2}=\int_{3 / 2} \frac{u^{2} \sqrt{u}}{2}-u \sqrt{u}+\frac{\sqrt{u}}{2} d u=\frac{1}{2} \frac{u^{7 / 2}}{\frac{7}{2}}-\frac{u^{5 / 2}}{\frac{5}{2}}+\frac{1}{2} \frac{u^{3 / 2}}{\frac{3}{2}}+c \\
& \int \sqrt{3 x+2} d x=\frac{1}{3} \frac{(3 x+2)}{3 / 2}+C \\
& \frac{1}{7}\left(x^{2}+1\right)^{7 / 2}-\frac{2}{5}\left(x^{2}+1\right)^{5 / 2}+\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+\frac{2}{9}(3 x+2)^{3 / 2}+c \\
& \frac{1}{7}\left(x^{2}+1\right)^{3} \sqrt{x^{2}+1}-\frac{2}{5}\left(x^{2}+1\right)^{2} \sqrt{x^{2}+1}+\frac{1}{3}\left(x^{2}+1\right) \sqrt{x^{2}-1}+\frac{2}{9}(3 x+2) \sqrt{3 x+2}+c \\
& \text { (b) } \int_{0}^{1} e^{x} \cos \left(2 e^{x}+7\right) d x \\
& U=2 e^{x}+7 \\
& d u=2 e^{x} d x \\
& \int_{2 e^{0}+7}^{2 e^{2}+7} \cos (u) \frac{d u}{2}=\left.\frac{1}{2} \sin u\right|_{a} ^{2 e+7}=\frac{1}{2} \sin (2 e+7)-\frac{1}{2} \sin 9
\end{aligned}
$$

Do not write above this line
NAME:
2. Consider $\int_{0}^{1} e^{x^{5}} d x$.
(a) Write a formula for the left hand sum approximation with $n=3$ subdivisions, $\left(L_{3}\right)$ for the integral above.

$$
\begin{aligned}
& \Delta x=\frac{1}{3} \quad x_{0}=0, x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}, x_{3}=1 \\
& L_{3}=\left(e^{0^{5}}+e^{(1 / 3)^{5}}+e^{(2 / 3)^{5}}\right) \cdot \frac{1}{3} \approx 1.048
\end{aligned}
$$

(b) Evaluate (L_{3}) to approximate the integral above.

$$
L_{3}=\left(e^{0^{5}}+e^{(1 / 3)^{5}}+e^{(2 / 3)^{5}}\right) \cdot \frac{1}{3} \approx 1.040
$$

Do not write above this line
NAME:
3. The acceleration of an object moving along a straight line, with initial velocity $v_{0}=4$ feet $/ \mathrm{sec}$, is given by $a(t)=2 t-5$ feet $/ \mathrm{sec}^{2}$.
a) Calculate the displacement of the object in the time interval $[0,3]$

$$
\begin{aligned}
& V(t)=t^{2}-5 t+4 \\
& \quad \text { displacement } \quad \int_{0}^{3} t^{2}-5 t+4 d t=\frac{t^{3}}{3}-\frac{5}{2} t^{2}+4 t \int_{0}^{3} \\
& =9-\frac{5}{2} \cdot 9+12=\frac{42-4-5}{2}=-\frac{3}{2} \text { feet }
\end{aligned}
$$

b) Calculate the distance traveled by the object in the time interval $[0,3]$

$$
\begin{aligned}
& \int_{0}^{3} 1 t^{2}-5 t+41 d t=\int_{0}^{3} t^{2}-5 t+4 d t \\
& +\int_{1}^{3}-t^{2}+5 t-4 d t=\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+\left.4 t\right|_{0} ^{1} \\
& +-\frac{t^{3}}{3}+\frac{5 t^{2}}{2}-4 t \int_{1}^{3}=\frac{1}{3}-\frac{5}{2}+4+\left(-9+5 \cdot \frac{9}{2}-12\right)+\frac{1}{3}-\frac{5}{2}+4 \\
& =\frac{2}{3}-3+8+\frac{3}{2}=\frac{4+18+9}{6}=\frac{31}{6} \quad \text { feet }
\end{aligned}
$$

c) The object reaches a point A on the line at time $t=2$. What is the object 's distance from A at time $t=3$?

$$
\begin{aligned}
& \text { Let A be the origin } \\
& S(t)=\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+4 t+S_{0} \\
& S(2)=0 \text { so } \frac{8}{3}-10+8+s_{0}=0 \quad s_{0}=-\frac{3}{3} \\
& |S(3)|=19-\frac{45}{2}+12-\frac{2}{3}\left|=1, \frac{126-135}{6}-\frac{4}{1}\right|=\frac{13}{6} \text { feet }
\end{aligned}
$$

Do not write above this line
NAME:
4. Calculate the area of the shaded region below. $A B$ is a segment of the straight line $y=\frac{x}{4}+\frac{3}{4}, B C$ is a segment of the straight line $y=-\frac{5}{2} x+\frac{29}{2}, C D$ is along the curve $y=x^{2}+2$ and $D A$ is along the curve $y=-x^{2}+2 . A=(1,1), B=(5,2)$ and $C=\left(\frac{5}{2}, \frac{33}{4}\right)$

$$
\begin{aligned}
& \int_{1}^{2} 4\left(y-\frac{3}{4}\right)-\sqrt{2-y} \\
& d u+\int_{2}^{5}-\frac{2}{5}\left(y-\frac{29}{2}\right)-\sqrt{y-2} d y= \\
& \frac{7}{3}+\frac{625}{48}=\frac{737}{18} \approx 15.354 \\
& \int_{0}^{1}\left(x^{2}+2\right)-\left(-x^{2}+2\right) d x+\int_{1}^{5 / 2}\left(x^{2}+2\right)-\left(\frac{x}{4}+\frac{3}{4}\right) d x+\int_{5 / 2}^{5}\left(-\frac{5}{2} x+\frac{29}{2}\right)-\left(\frac{x}{4}+\frac{3}{4}\right) d x \\
& \frac{2}{3}+\frac{125}{32}+\frac{275}{32} \\
& \text { = }
\end{aligned}
$$

Do not write above this line
NAME:
5. The graph of $f(x)$ below consists of a straight line and a semicircle. Give exact answers.

(a) Calculate $\left|\int_{-1}^{2} f(x) d x\right|=\left|\frac{-1}{2} \cdot 1 \cdot 4+\frac{\pi}{2}\right|=\frac{2-\frac{\pi}{2}}{2}$
(b) Calculate $\int_{-1}^{2}|f(x)| d x=2+\frac{\pi}{2}$
(c) Let $h(x)=\int_{0}^{4 x} f(t) d t$. Compute $h^{\prime}\left(\frac{1}{4}\right)$

$$
\begin{aligned}
& h^{\prime}(x)=f(4 x) \cdot 4 \\
& h^{\prime}\left(\frac{1}{4}\right)=f(1) \cdot h=4
\end{aligned}
$$

(d) Let $g(x)=\int_{0}^{x} f(t) d t$. Is g concave up or down at $x=-\frac{1}{2}$? Justify your answer.

$$
f=\rho^{\prime} \text { is increasing at } x=-\frac{1}{2} \text { so concele up }
$$

Do not write above this line
NAME:

